Quanto è costante la velocità della luce?

Scienza & Tecnologia

Di

 

La velocità della luce nel vuoto è una costante di natura. Anzi, non proprio. Alcune teorie quantistiche della gravità minano questa certezza, suggerendo che i fotoni, i “quanti” di luce, potrebbero viaggiare a velocità diverse che dipendono dalla loro energia.

Per indagare questa ipotesi e soprattutto provare a quantificare l’entità di questo effetto, un gruppo di ricercatori guidati da Maria Grazia Bernardini, ora in forza all’Università di Montpellier in Francia e associata Inaf, che ha visto la partecipazione di colleghi dell’Istituto Nazionale di Astrofisica di Milano, ha realizzato uno studio sulla luce emessa dai lampi di raggi gamma (Gamma-Ray Burst, GRB) corti, potenti esplosioni cosmiche legate alla fusione di stelle di neutroni. I risultati di questa indagine, pubblicati in un articolo sulla rivista Astronomy&Astrophysics, forniscono un nuovo limite sull’energia dei fotoni oltre il quale gli effetti di gravità quantistica diventano importanti e rappresentano un passo importante per l’utilizzo dei GRB corti come strumento per studiare gli aspetti più estremi della Fisica.

Uno dei concetti fondamentali della fisica moderna riguarda la cosiddetta duplice natura della luce. La luce infatti si può descrivere come un’onda elettromagnetica ma, allo stesso tempo, ha proprietà tipiche delle particelle, che in questo caso vengono chiamate fotoni. Ad ogni determinata lunghezza d’onda della luce corrisponde un’energia del fotone associato. La teoria della relatività speciale di Einstein prevede che la luce nel vuoto viaggi ad una velocità costante “c” circa uguale a 300 mila chilometri al secondo, quale che sia l’energia dei fotoni. Tuttavia, alcune teorie quantistiche della gravità considerano il vuoto come un “mezzo gravitazionale”. Secondo queste teorie, questo “mezzo gravitazionale” conterrebbe delle disomogeneità – o fluttuazioni – estremamente piccole, dell’ordine della cosiddetta “lunghezza di Planck” pari a 10-33 cm, ovvero 10 miliardi di miliardi di volte più piccola del diametro di un protone. Una sorprendente conseguenza della presenza di queste disomogeneità sarebbe che fotoni di diversa energia non viaggerebbero più tutti a alla stessa velocità nel vuoto, ma potrebbero avere velocità differenti che dipendono dalla loro energia: maggiore è l’energia del fotone, maggiore sarà l’effetto dovuto alla gravità quantistica. Se così fosse, verrebbe però violata la cosiddetta Invarianza di Lorentz, che è proprio il principio fisico alla base della relatività speciale.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

CAPTCHA ImageChange Image

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Traduci
Facebook
Twitter
Instagram
YouTube